Методические рекомендации по расчётам для обустройства теплого пола

Методические рекомендации по расчётам для обустройства теплого пола

По теплому полу приятно ходить, нет дискомфорта от холода под ногами и духоты в верхней части помещения. Грамотно обустроенная система позволяет равномерно прогревать все зоны комнат, создавая уют и экономя средства на обогрев. Монтаж теплого пола относительно прост, но эффективность отопительного контура полностью зависит от правильности расчетов при подготовке проекта.

Требования для установки теплого пола

Чтобы теплый пол создавал нужный климат и не становился причиной неудобств или коммунальных аварий, помещение, в котором будет монтироваться этот отопительный контур, должно отвечать следующим требованиям:

  • высота потолков от чернового пола должна быть такой, чтобы ее уменьшение на 20 см не вызывало дискомфорта;
  • дверной проем должен иметь высоту не менее 2,1 м;
  • черновой пол должен быть достаточно прочным, чтобы выдержать цементную стяжку, которой будет закрыт тепловой контур;
  • если черновой пол уложен на грунт или под утепляемым помещением находится неотапливаемое, необходимо проложить дополнительный слой утеплителя с экранирующим покрытием;
  • поверхность, на которой планируется монтаж теплового контура и всех составляющих “пирога” теплого пола, должна быть ровной и чистой.

Общие рекомендации

Если вышеперечисленные требования соблюдены, система “теплый пол” будет установлена без проблем. Однако ее эффективность зависит не только от размеров помещения, но и от других его особенностей, учесть которые поможет выполнение следующих рекомендаций:

  • Стены являются основным источником теплопотерь, поэтому перед расчетом и монтажом отопительной системы необходимо хотя бы примерно рассчитать объем уходящего на обогрев улицы тепла. Если полученная цифра оказывается выше 100 Вт на квадратный метр, стены желательно утеплить, чтобы не переплачивать за отопление;
  • Тепловой контур не должен попадать под места установки массивной мебели и тяжелого стационарного оборудования. Постоянное большое давление на пол приведет к повреждению труб или кабелей отопительной системы и выведет ее из строя.
  • Для равномерного прогревания помещения необходимо, чтобы такие необогреваемые зоны занимали не более 30% площади пола. Поэтому перед проведением расчетов выполняют чертеж помещения в масштабе, и отмечают на этом чертеже места, которые следует оставить неотапливаемыми. Затем подсчитывается общая рабочая площадь – она должна составлять 70% или более от общей.
  • Необходимо рассчитать оптимальную форму, протяженность и шаг теплового контура и его мощность, а также выполнить чертеж с указанием мест подключения к системе отопления, направления потока теплоносителя.

Способы установки системы «теплый пол»

Для правильного функционирования этой отопительной системы важна четкая последовательность слоев так называемого “пирога” теплого пола.

Тепловой контур укладывается на предварительно тепло- и гидроизолированную поверхность, а сверху заливается или засыпается цементной стяжкой, поверх которой укладывается финишное напольное покрытие. Вышеперечисленные слои – оболочка пирога – обязательны в обоих случаях. Они защищают систему от внешних воздействий и повышают ее КПД.

В качестве начинки, то есть рабочего органа системы, может выступать трубопровод, по которому пойдет горячая вода от котла, или греющий электрокабель.

В первом случае систему называют водяным полом, во втором – электрическим.

Установить теплый пол можно разными способами, возможны различные варианты конфигурации контура и крепления его элементов.

Обратите внимание! Способ крепления влияет только на удобство монтажа, а вот форма контура определяет равномерность прогрева помещения.

Конфигурации теплового контура

Трубы водяного пола или кабели электрического можно расположить двумя способами:

  • змейкой – уложив греющий элемент параллельными линиями;
  • улиткой – греющий элемент укладывается по спирали от стен к центру помещения.

Змейку укладывают тремя способами:

  • прямым – параллельно одной из стен, начиная от самой холодной;
  • угловым – от самого холодного угла к противоположному, оставив вдоль одной из стен пространство для отведения обратки;
  • двойным – сначала прокладывается первая змейка с широким шагом, а затем, дойдя до противоположной стены или угла тепловой элемент разворачивается и возвращается обратно вдоль первого контура, таким образом, получается две параллельных змейки, одна из которых условно является подающей, а вторая отводящей.

Спираль улитки укладывается сходно с двойной змейкой: сначала подающая спираль с широким шагом, в центре выполняется S– или Z–образный разворот, затем между витками первой спирали прокладывается вторая – обратная.

Прямая и угловая змейки просты в монтаже и удобны для выравнивания температуры воздуха в помещении, имеющем с одной стороны холодную зону, а с другой – примыкание к отапливаемым помещениям.

Двухконтурные конфигурации – двойная змейка и улитка – обеспечивают равномерный прогрев пола, что позволяет ходить по нему босиком, не ощущая дискомфорта.

Способы фиксации теплового контура

Чтобы при заливании теплого пола цементным раствором или засыпании сухой стяжкой тепловой контур не деформировался, нагревательный элемент фиксируют на подготовленной поверхности.

Применяют два способа:

  • Укладывание на специальный экранированный утеплитель для тёплого пола, на котором заводским методом или при монтаже нанесена разметка и уложена армирующая сетка. В этом случае протягивают тепловой контур, ориентируясь по размеченным клеткам. Для фиксации применяют хомуты, которые втыкают непосредственно в утеплитель или прикрепляют к армирующей сетке, либо поверх утеплителя укладывают монтажные планки с пазами для фиксации. Этот способ дешев, но требует дополнительных трудозатрат на установку хомутов. Минусом является низкая тепло– и звукоизоляция, из-за чего требуется проведение дополнительных изоляционных мероприятий, особенно в многоэтажных домах.
  • Использование профилированных матов с бобышками – выступающими частями, расширяющимися сверху. Бобышки расположены таким образом, что на матах можно протянуть тепловой контур любой конфигурации. Для фиксации достаточно вжать трубу или кабель между бобышками, а расширенная верхняя часть будет надежно удерживать греющий элемент в заданном положении. Такие маты дороже простых фольгированных утеплителей, но обеспечивают и необходимый уровень изоляции, и защиту теплоэлемента от повреждений.

Методика расчетов

Теплый пол обеспечит комфорт в помещении только в одном случае – если будет давать тепло в необходимом и достаточном количестве, не перегревая одни участки и не оставляя другие холодными.

Чтобы получить такую эффективную систему, нужно провести расчеты:

  • теплопотерь помещения,
  • необходимой мощности теплового контура,
  • длины шага змейки или улитки,
  • общей длины контура.

Как рассчитать теплопотери

Эффективность отопительной системы не в последнюю очередь зависит от особенностей отапливаемого помещения: наличия окон и выходящих на улицу или в холодные помещения дверей, количества внешних стен и их расположения относительно солнца и ветра, состояния несущих конструкций и их теплопроводности. Все эти мелочи в сумме дают теплопотери, то есть часть полезной мощности будет уходить на обогрев не дома или квартиры, а улицы. Но какая часть?

Ответить на этот вопрос сможет только специалист – проведя осмотр, замеры и расчеты, он составит тепловую карту помещения и вычислит уровень теплопотери.

Если полученная при расчете теплопотерь цифра ниже 100 Вт на квадратный метр, можно смело приступать к расчету теплого пола и его установке – система справится с обогревом и создаст нужный климат практически без потерь.

Это важно! При более высоком уровне теплопотерь до расчета и монтажа теплого пола потребуется исправить дефекты теплоизоляции и провести работы по утеплению помещения. Пренебрежение этим этапом приведет к тому, что на обогрев будет тратиться много энергии и денег, а создать уют так и не получится.

Самостоятельное вычисление теплопотерь тоже возможно, хотя результат будет очень приблизительным. Общую картину он все же прояснит, сэкономив при этом финансы. Для расчета используют средние значения теплопотери квадратного метра стены, учитывая уровень ее теплоизоляции и наличие окон.

Особенности помещения Объем теплопотери, Вт/кв.м
Качественное утепление стен, качественный стеклопакет или отсутствие окон 40
Небольшая теплоизоляция, обычные окна 70-80
Дом старой застройки, без дополнительного утепления, вне зависимости от наличия окон 100
Новостройка или новый коттедж без утепления или с панорамными окнами 300

Чуть точнее, но без вызова специалиста, можно рассчитать теплопотери при помощи онлайн-калькуляторов. В них для вычисления теплопотерь необходимо указать материал и толщину стен, наличие и размеры окон и дверей и другие особенности помещения. Но получить точный результат без специального оборудования и знаний практически невозможно.

Расчет мощности

Этот параметр рассчитывают для определения количества тепла, которое должен выделить тепловой контур, чтобы обогреть конкретное помещение. И в этом случае точные расчеты провести могут только специалисты, но здесь точность уже не настолько важна.

Обычно теплый пол оснащают устройствами, которые позволяют регулировать уровень нагрева, поэтому для выполнения чертежа и проекта своими руками обычно пользуются средними значениями.

Особенности строения, в котором располагается отапливаемое помещение Общая площадь строения, кв.м Необходимая мощность, Вт/кв.м
многоквартирный дом любая 100
частный дом до 150 120
150-300 100
300-500 90
Будет полезно:  Как сделать самодельный трубогиб для профильной трубы - полное руководство с чертежами

Для получения необходимой мощности теплового контура число из правого столбца умножают на площадь помещения, в котором планируется обустройство теплого пола.

Вычисление длины шага

Расчет расстояния между соседними параллельными участками теплового элемента необходим для того, чтобы:

  • обеспечить равномерное нагревание помещения,
  • предотвратить соприкосновение труб или кабелей друг с другом,
  • не оставлять на полу непрогретых зон, чтобы было комфортно ходить по напольному покрытию даже босиком.

Минимальный шаг между линиями теплового элемента – 10 см, такое расстояние достаточно для соблюдения техники безопасности и необходимо для усиленного обогрева наиболее холодных зон – вдоль внешних стен, под окнами и около выходящих в холодные помещения или на улицу дверей.

Постепенно шаг увеличивается на 5-10 см – для удобства дальнейших расчетов и монтажа.

Самое большое расстояние между трубами оставляется в центре помещения – здесь необходимо не менее 15 см, но не более 30. Такой шаг предотвратит появление перегретой зоны и не оставит полосок холода на полу.

Как рассчитать длину контура

При прокладывании теплого пола в основном используют длинномерные трубы и кабели, позволяющие протянуть линию нужной геометрии с минимальным использованием соединительных элементов. Чтобы не ошибиться при покупке расходных материалов, необходимо рассчитать общую длину теплового контура. Это самый простой из расчетов, но для его выполнения важно подготовить точный чертеж с нанесением всех линий и указанием расстояний.

Расчет можно выполнить одним из следующих методов:

  • По среднему значению – на каждый квадратный метр пола в среднем укладывается 5 погонных метров трубы или кабеля. Таким образом нужно умножить площадь, занимаемую тепловым контуром, на 5.
  • По среднему шагу – площадь помещения делится на среднее значение шага в метрах и прибавляется 10% на углы и повороты. Так, если у стены расстояние между параллельными линиями 10 см, а в центре – 30 см, то средний шаг составит 0,2 м.
  • По ширине помещения – ее умножают на количество шагов и прибавляют длину комнаты на повороты. Этот способ подходит только для укладки змейкой.

Обратите внимание! Оптимальной длиной трубопровода теплого водяного пола является 80-120 м – вода успевает прогреть помещение, не остывая до критической температуры, при которой упадет давление в отопительной системе. Если расчетная длина оказывается больше, лучше выполнить два примерно одинаковых тепловых контура вместо одного и подключить их к системе отопления параллельно.

ПРАКТИЧЕСКОЕ ПОСОБИЕ ДЛЯ РАСЧЕТА СИСТЕМЫ «ВОДЯНОЙ ТЕПЛЫЙ ПОЛ»

    Анна Гендрикова 3 лет назад Просмотров:

1 ПРАКТИЧЕСКОЕ ПОСОБИЕ ДЛЯ РАСЧЕТА СИСТЕМЫ «ВОДЯНОЙ ТЕПЛЫЙ ПОЛ» Водяные теплые полы прочно вошли в арсенал инженерного оборудования дома благодаря созданию ими максимально комфортного для человека и домашних животных температурного режима в помещениях. Графики распределения температуры по высоте помещения Основным фактором, который обеспечивает надежность и эффективность системы теплого пола – это использование комплектной системы, поставляемой одним производителем, что гарантирует полную совместимость всех элементов и возможность точного расчета температурных режимов. Практика показывает, что устройство теплых полов “на глазок” обходится заказчику в 1,5-2,3 раза дороже, чем грамотно спроектированная и налаженная система. Для возможности выполнения системы напольного отопления необходимо, чтобы помещение имело резерв по высоте для размещения “пирога” теплого пола. Минимально требуемая высота конструкции теплого пола составляет 85мм (без учета покрытия пола).

2 Существует несколько способов раскладки петель теплого пола по помещению. Наиболее предпочтительным вариантом является укладка “улиткой”. По сравнению с раскладкой “змейкой” первый вариант дает 10-15% экономии в количестве трубы и значительно выигрывает по гидравлическим характеристикам из-за малого количества “калачей”. Сравнение вариантов укладки петель

3 На практике применяются следующие способы подключения систем теплых полов: 1. непосредственно от теплогенератора (котла) через смесительно-регулировочный узел; 2. от системы радиаторного отопления через теплообменник с созданием собственного контура; 3. от контура горячего водоснабжения через термостатический узел; 4. от обратного трубопровода системы радиаторного отопления через термостатический узел. Конструирование систем водяных теплых полов не представляет особой трудности, если помнить некоторые основные правила: 1. для равномерной теплоотдачи трубы теплого пола следует укладывать параллельно друг другу; 2. наращивать петли допускается только с применением пресс-фитингов ( при этом сопротивление фитингов включается в гидравлический расчет); 3. после укладки труб следует выполнить исполнительную схему, где указать точную привязку осей труб. Это необходимо, чтобы при дальнейших работах не повредить трубу. Для крепления строительных конструкций к полу, в стяжке нужно устанавливать пробки, дюбели или закладные детали; 4. деформационные швы следует устраивать в следующих местах: вдоль стен и перегородок; при размере пола свыше 40м2; при длине пола свыше 8м; в местах входящих углов. 5. к одному коллектору надо стараться присоединять петли примерно равной длины. расчет теплого пола Принцип расчета теплого пола рассмотрим на конкретном примере. Исходные данные: Требуемая температура внутреннего воздуха в помещении. Для жилых помещений эта величина обычно составляет 20 С. Площадь помещения. Определяется по архитектурно-строительным чертежам или по результатам обмеров. Для нашего примера примем помещение размерами 5м х 4м, площадью S = 20м2.Учитывая, что вдоль внутренних стен,где будет располагаться мебель, нужно оставить краевые участки шириной 300мм, активная площадь пола составит 20-(5+4+4)х0,3=16,1м2. Конструкция пола. Для рассматриваемого примера в расчет принимается толщина цементно-песчаной стяжки 70мм и покрытие пола из керамической плитки толщиной 15мм. Теплопотери помещения. Определяются на основании теплотехнического расчета и учитывают: потери тепла через ограждающие конструкции ( стены, полы, потолки, оконные и дверные проемы); затраты тепла на нагрев воздуха, поступающего в помещения через неплотности ограждающих конструкций ( инфильтрация); затраты тепла на нагрев воздуха, поступающего в результате работы вентиляции; поступления тепла за счет нагрева солнечными лучами (инсоляция); поступления тепла от работающего оборудования, электроосвещения, оргтехники,

4 бытовых приборов и прочих источников тепла; тепловыделения от находящихся в помещении людей и животных. Использование различных укрупненных показателей, как правило, дает весьма значительную погрешность, так как разброс теплопотерь даже для жилых помещений может составлять от 40 Вт/м2 ( для зданий с эффективными ограждающими конструкциями и стеклопакетами ) до Вт/м2 (для коттеджей с кирпичными неутепленными стенами и большим количеством проемов).в нашем примере теплопотери помещения составляют Q=1288Вт. То есть удельные теплопотери помещения составляют q =1288/16,1=80Вт/м2. Предварительно принятые решения: Определение диаметра трубы и шага между осями труб.зная удельные теплопотери, зададимся диаметром трубы и шагом между осями труб, используя график. График зависимости удельного теплового потока от средней температуры воды График показывает, что для достижения требуемого теплового потока 80 Вт/м2 можно использовать несколько вариантов, сведенных в таблицу:

5 Для выбора наиболее оптимального варианта необходимо произвести дополнительные расчеты. Расчетные данные: Определение средней температуры поверхности пола. Среднюю температуру поверхности пола при известном тепловом потоке и температуре воздуха в помещении определяем по графику: График зависимости средней температуры поверхности пола от теплового потока и внутренней температуры воздуха: Для нашего примера средняя температура поверхности пола составит 26,9 С. Средняя температура пола не превышает допустимых значений, представленных в таблице:

6 Температура по поверхности пола распределяется неравномерно над трубой она максимальная, а между труб минимальная. Примем полученную среднюю температуру 26,9 С за максимальную (Т пол) и рассчитаем, какую среднюю температуру должен иметь теплоноситель (Т ср). Определение средней температуры теплоносителя. На этом этапе расчета можно пренебречь теплопотерями в стенках трубы и на ее внутренней поверхности (тепловосприятие). Расчет ведем по формуле: Тср =Тпол + q δпл /λпл + q δст /λпл = 26,9 + 80х0,015/1,5 + 80х0,07/0,93 = 33,42 С ; где : q удельный тепловой поток ( 80 Вт/м2); δпл толщина плитки ( 0,015м); λпл коэффициент теплопроводности плитки (1,5 Вт/м К); δст толщина стяжки (0,07м); λст коэффициент теплопроводности стяжки (0,93 Вт/м К). Окончательный выбор шага труб. Возвращаясь к графику, становится ясно, что из условия непревышения максимально допустимой температуры поверхности пола надо принимать шаг труб 100мм. Определение количества контуров. Так как расход трубы для шага 100 мм составит порядка 200 м, принимаем решение разбить помещение на две петли, чтобы не превысить экономически целесообразные предельные длины петель, указанные в таблице: Наружный диаметр трубы,мм Максимальная длина петли, м Определение тепловой нагрузки на одну петлю Тепловая нагрузка на каждую петлю составит Q1 = Q /2=1688/2=844 Вт. Определение перепада температур t. Оптимальный перепад температур для теплых полов составляет t = 5 С. При этом перепаде прогрев пола идет наиболее равномерно. Допускается перепад до 10 С, но в этом случае босая ступня человека может ощущать неравномерность нагрева пола. В нашем примере задаемся t = 5 С Определение температуры теплоносителя в прямом и обратном трубопроводе. Температура теплоносителя в прямом трубопроводе: Т1 = Тср + t /2= 33,42+5/2=35,9 С. Температура в обратном трубопроводе: Т2 = Тср – t/2= 33,42-5/2=30,9 С.

Будет полезно:  Класс герметичности воздуховодов для эффективной работы вентиляции

7 Определение расхода теплоносителя в петле. Расход теплоносителя в петле ( G ) рассчитывается для подбора окончательного диаметра труб и вычисления гидравлических потерь. G = Q1 / (4187 х t )= 844/ (4187 х 5) =0,04 кг/с. Определение скорости движения теплоносителя. Максимальная скорость движения теплоносителя в трубах теплого пола должна лежать в пределах от 0,15 до 1 м/с. Определим скорости воды в трубах диаметрами 16мм и 20мм (внутренние диаметры Dвн -12мм и 16мм): V16 = 1,274 х G / ( Dвн 2 x ρ ) = 1,274 х 0,04/ (0,012 2 х 1000) = 0,354 м/с; V20 = 1,274 х 0,04/(0,016 2 х 1000)= 0,199 м/с. Обе трубы удовлетворяют допустимым интервалам скоростей. Принимаем трубу с наружным диаметром 16, как менее дорогую. На практике, порой выгоднее принимать большее значение диаметра, чтобы снизить гидравлические потери в системе. Определение длин петель. Длину петель определяем на основании чертежа раскладки труб. Сравнение вариантов раскладки и значения суммы коэффициентов местных сопротивлений для рассматриваемого примера приведены выше. Определение потерь давления в петлях. Потери давления в петлях теплого пола определяются для подбора насосного оборудования и расчета предварительной настройки регулировочных вентилей коллектора. Общие потери в петле складываются из линейных (от трения) потерь и потерь давления на преодоление местных сопротивлений (изменение направления, диаметра, характеристик потока). Линейные потери в петлях находим на основании полученного значения скорости теплоносителя (0,354 м/с) и выбранного диаметра трубы (16мм) по гидравлическим таблицам. Перемножив полученные удельные потери (167 Па/м) на длину трубы получим линейные потери давления 167х96 =16032 Па. Сумму коэффициентов местных сопротивлений Z определяем как произведение количества отводов («калач» считается за два отвода) на 0,5 (КМС отвода). Для нашего примера («улитка») Z =52х0,5 = 26. (Потери в присоединительных фитингах условно не учитываются). Потери на местные сопротивления определяются по формуле: P = ρ x Z x V 16 2 /2 = 1000 х 26 х 0,354 2 /2=1629 Па. Суммируя линейные и местные потери получаем полное гидравлическое сопротивление петли: =17661 Па. ПОТЕРИ ДАВЛЕНИЯ В ОДНОЙ ПЕТЛЕ НЕ ДОЛЖНЫ ПРЕВЫШАТЬ Па! При соблюдении данного ограничения не возникнет опасность появления «запертой» петли, когда увеличение мощности насоса пропорционально увеличивает гидравлические потери, что вновь вызывает необходимость повышения мощности насоса и так далее После определения потерь давления по каждой из петель, можно приступать к выбору насоса и составлению таблицы предварительной настройки коллекторных вентилей. Для прочих вариантов конструкций пола можно использовать нижеприведенные графики. Графики теплового потока для различных вариантов покрытий:

8 График зависимости удельного теплового потока от средней температуры воды в трубах (при толщине стяжки 30мм, Т.воздуха в помещении 20 С, покрытии пола из керамической плитки) График зависимости удельного теплового потока от средней температуры воды в трубах (при толщине стяжки 50мм, Т.воздуха в помещении 20 С, покрытии пола из керамической плитки) График зависимости удельного теплового потока от средней температуры воды в трубах (при толщине стяжки 30мм, Т.воздуха в помещении 20 С, покрытии пола из ленолиума)

9 График зависимости удельного теплового потока от средней температуры воды в трубах (при толщине стяжки 70мм, Т.воздуха в помещении 20 С, покрытии пола из ленолиума) График зависимости удельного теплового потока от средней температуры воды в трубах (при толщине стяжки 50мм, Т.воздуха в помещении 20 С, покрытии пола из ленолиума)

Расчет теплого водяного пола

Статью опубликовал: Николай Стрелковский

Современная система тёплых водяных полов отождествляется с высоким уровнем уюта и комфорта. Такой пол эффективно обогревает помещение и не оказывает вредного воздействия на жизнь и здоровье жильцов. Подобные результаты могут быть достигнуты только при условии правильно выполненных расчётов и грамотно проведённых монтажных работах.

Расчет теплого пола водяного

Тёплый водяной пол может являться основным источником отопления жилого помещения или служить вспомогательным обогревательным элементом. Основные расчёты таких полов базируются на данных схемы работы: лёгкий подогрев поверхности для улучшения комфорта или обеспечение полноценным теплом всей площади помещения. Выполнение второго варианта предполагает более сложную конструкцию тёплого пола и надёжную систему регулировки.

График комфортных температурных условий

Данные для расчётов

Расчёты и проектирование базируются на нескольких характеристиках помещения, а также выборе варианта отопления — основное или дополнительное. Немаловажными показателями являются тип, конфигурация и площадь помещения, в котором запланирован монтаж такого вида отопительной системы. К оптимальному варианту относится использование поэтажного плана с указанием всех необходимых для расчётов параметров и размеров. Допускается самостоятельное выполнение максимально точных замеров.

График расчета теплого пола

Чтобы определиться с величиной теплопотерь, потребуется наличие следующих данных:

  • тип материалов, использованных в процессе строительства;
  • вариант остекления, включая тип профиля и стеклопакета;
  • температурные показатели в регионе проживания;
  • использование дополнительных источников обогрева;
  • точные размеры площади помещения;
  • предполагаемый температурный режим в помещении;
  • высота этажа.

Кроме того, учитывается толщина и изоляция пола, а также вид предполагаемого к использованию напольного покрытия, что оказывает непосредственное влияние на эффективность всей отопительной системы.

При выполнении расчётов следует принимать во внимание желаемую для обустраиваемого помещения температуру.

Расход трубы теплого пола в зависимости от шага петли

Шаг, мм Расход трубы на 1 м2, м п.
100 10
150 6,7
200 5
250 4
300 3,4

Особенности проектирования

Все расчёты водяных тёплых полов должны быть произведены предельно тщательно. Любые недочёты при проектировании могут быть исправлены только в результате полного или частичного демонтажа стяжки, что способно не только повредить внутреннюю отделку в помещении, но и приведёт к значительным затратам времени, сил и средств.

Рекомендуемые температурные показатели поверхности пола в зависимости от вида помещения составляют:

  • жилое помещение — 29 °C;
  • участки около наружных стен — 35 °C;
  • ванные комнаты и зоны с высокой влажностью — 33 °C;
  • под напольное покрытие из паркета — 27 °C.

Короткие трубы предполагают использование более слабого циркуляционного насоса, что делает систему экономически выгодной. Контур с диаметром 1,6 см не должен быть длиннее 100 метров, а для труб с диаметром 2 см максимальная длина составляет 120 метров.

Таблица решений для выбора системы водяного теплого пола

Правила расчёта

Для выполнения системы отопления на площади 10 квадратных оптимальным вариантом будет:

  • использование 16 мм труб с длиной в 65 метров;
  • показатели расхода используемого в системе насоса не могут быть меньше двух литров в минуту;
  • контуры должны обладать равноценной длиной с разницей не более 20%;
  • оптимальный показатель расстояния между трубами составляет 15 сантиметров.

Следует учитывать, что разница между температурой поверхности и теплоносителя может составлять порядка 15 °C.

Оптимальный способ при укладке трубной системы представлен «улиткой». Именно такой вариант монтажа способствует максимально равномерному распределению тепла по всей поверхности и позволяет минимизировать гидравлические потери, что обусловлено плавными поворотами. При укладке труб в зоне наружных стен оптимальный шаг составляет десять сантиметров. Для выполнения качественного и грамотного крепления целесообразно проводить предварительную разметку.

Таблица теплопотребления различных частей здания

Расчёты труб и мощности

Полученные в результате замеров данные являются основой для расчёта мощности такого оборудования, как нагревательный тепловой насос, газовый или электрический котёл, а также позволяют определить расстояние между трубами при выполнении монтажных работ.

Крепление труб к арматурной сетке

Чтобы правильно рассчитать необходимую для укладки длину труб, следует определиться с видом и особенностями этих элементов:

  • нержавеющий гофрированный тип труб отличается эффективностью и качественной теплоотдачей;
  • медные трубы характеризуются высоким уровнем теплоотдачи и внушительной стоимостью;
  • сшитые полиэтиленовые трубы;
  • металлопластиковый вариант труб с идеальным соотношением качества и стоимости;
  • пенопропиленовые трубы с низкой теплопроводностью и доступной ценой.

Гофрированная труба для теплого пола – один из самых лучших вариантов для водяного подогрева пола

Значительно облегчить расчёты и сделать их максимально точными позволяет использование специальных компьютерных программ. Все расчёты должны выполняться с учётом способа монтажа и расстояния между трубами.

Основными показателями, характеризующими систему, являются:

  • необходимая длина нагревательного контура;
  • равномерность распределения выделяемой тепловой энергии;
  • величина допустимых пределов активной тепловой нагрузки.

Следует учитывать, что при значительной площади отапливаемого помещения допускается увеличивать шаг укладки с одновременным увеличением температурного режима теплоносителя. Возможный диапазон шага при укладке составляет от пяти до шестидесяти сантиметров.

Наиболее распространённые соотношения расстояний и тепловых нагрузок:

  • расстояние в 15 сантиметров соответствует теплоносителю от 800 Вт на 10 м²;
  • расстояние в 20 сантиметров соответствует теплоносителю от 500 до 800 Вт на 10 м²;
  • расстояние в 30 сантиметров соответствует теплоносителю до 500 Вт на 10 м².

Чтобы точно знать, достаточно ли использовать систему как единственный источник обогрева или же «тёплые полы» могут служить исключительно дополнением к основному отоплению, необходимо выполнить черновой, предварительный расчёт.

Схема подключения водяного теплого пола к котлу

Черновые расчёты теплового контура

Чтобы определить плотность эффективного теплового потока, отдаваемого м² тёплых полов, необходимо воспользоваться формулой:

g (Вт/м²) = Q (Вт) / F (м²)

  • g — показатель плотности теплового потока;
  • Q — суммарный показатель теплопотерь в помещении;
  • F — предполагаемая к обустройству площадь пола.

Для вычислений величины Q учитывается площадь всех окон, средняя высота потолков в помещении, теплоизоляционные характеристики полов, стен и кровли. При выполнении напольного отопления в качестве дополнительного, суммарный объём теплопотерь целесообразно определять в форме процентного соотношения.

При расчётах величины F учёту подлежит только участок пола, участвующий в процессе обогрева помещения. На участках расположения предметов интерьера и мебели следует оставлять свободные зоны шириной порядка 50 сантиметров.

Для определения средней температуры теплоносителя в условиях нагревательного контура используется формула:

ΔТ (°С) = (TR + TO) / 2

  • TR — температурный показатель на участке входа в нагревательный контур;
  • ТО — температурный показатель на участке выхода из нагревательного контура.

Рекомендуемые температурные параметры в °С на вход и выход для стандартного теплоносителя составляют: 55—45, 50—40, 45—35, 40—30. Следует учитывать, что температурный показатель на подачу не может быть выше 55 °С, с условием температуры на обратный контур с разницей в 5 °С.

В соответствии с полученными величинами g и ΔТ выполняется подбор диаметра и шага для монтажа труб. Удобно использовать специальную таблицу.

Таблицы расчета теплового потока для теплого пола в зависимости от материала напольного покрытия

Таблицы расчета теплового потока для теплого пола в зависимости от материала напольного покрытия

Таблицы расчета теплового потока для теплого пола в зависимости от материала напольного покрытия

Таблицы расчета теплового потока для теплого пола в зависимости от материала напольного покрытия

На следующем этапе производится расчёт приблизительной длины задействованных в системе труб. С этой целью необходимо разделить показатель площади обогреваемого пола в м² на расстояние между уложенными трубами в метрах. К полученному показателю следует прибавить запас длины на выполнение загибов и подключение к длине прибавляется длина на загибы труб и длина на подключение к системе коллекторов.

При известной длине и диаметре труб легко высчитывается показатель объёма и скорость теплоносителя, оптимальная величина которого составляет 0,15—1 метр в секунду. При более высоких значениях скорости движения следует увеличить показатель диаметра используемых труб.

Правильный выбор насоса, используемого в отопительном контуре, базируется на величине расхода теплоносителя с запасом в двадцать процентов. Такое увеличение показателя соответствует параметрам гидравлического сопротивления в трубной системе. Подбор наноса для циркуляции нескольких отопительных систем заключается в соответствии показателей мощности этого оборудования с общим расходом всех используемых отопительных контуров.

Расчет стоимости теплого пола

Советы и рекомендации

Чтобы получить максимально точные расчёты, целесообразно обратиться за консультацией профессионалов, специализирующихся на выполнении монтажа внутренних инженерных коммуникаций.

Допускается использование онлайн-калькулятора, который облегчит расчёты, но даст весьма приблизительные вычисления, представляющие общую информацию о масштабах предстоящих монтажных работ.

Пример расчета водяного теплого пола

Для обогрева старых и ветхих сооружений, не обладающих качественным утеплением, нецелесообразно использовать систему тёплых водяных полов в качестве единственного отопительного элемента, что обусловлено низкой степенью эффективности и высоким уровнем энергозатрат.

Уровень технической грамотности всех выполненных расчётов оказывает непосредственное влияние на качественные характеристики монтируемой отопительной системы. Правильные расчёты позволяют оптимизировать финансовые затраты не только на процесс установки водяного обогрева полов, но и минимизировать расходы во время эксплуатации и обслуживания всей отопительной системы.

Видео – Расчет теплого пола водяного (часть 1)

Видео – Расчет теплого пола водяного (часть 2)

Расчет теплых полов (стр. 1 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное агентство по образованию

Государственное образовательное учреждение

«РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ»

Утверждено на заседании кафедры

кондиционирования 16.02.2006 г.

Расчет теплых полов

к курсовому проекту по дисциплине «Отопление»

для студентов специальности 290700 «Теплогазоснабжение и вентиляция»

Расчет теплых полов: методические указания к курсовому проекту по дисциплине «Отопление» для студентов специальности 290700 «Теплогазоснабжение и вентиляция».– Ростов н/Д: Рост. гос. строит. ун-т, 2006. –19 с.

Содержат сведения о проектировании и расчете напольного отопления в жилых и общественных зданиях. Использованы материалы, опубликованные в действующих нормативных и справочных документах.

Редактор

Темплан 2006г., поз. 212

Подписано в печать 16.06.06. Формат 60х84/16.

Бумага писчая. Ризограф. Уч.-изд. л. 1,7. Тираж 30 экз.

Ростовского государственного строительного университета

Ростов на-Дону, 22, .

строительный университет, 2006

Системы «теплый пол» известны почти столько же, сколько существует отопление вообще. Одно из первых упоминаний касается теплых полов в древнеримских термах (банях), где нагретый воздух проходил по специальным каналам в каменном полу. Имелись теплые полы аналогичной конструкции и в турецких банях, причем там они являлись обязательным атрибутом. Таким образом, человечество уже более двух тысяч лет (а по другим данным, пяти) ценит тот замечательный комфорт, который несут системы типа «теплый пол». Однако до начала ХХ в. теплоносителем являлся исключительно нагретый воздух, который под действием естественной тяги проходил по каналам в полу, постепенно отдавая свое тепло гранитным плитам. В начале ХХ в. с появлением насосов появились теплые полы с использованием нагретой воды. И наконец с середины столетия с появлением относительно дешевой и доступной электроэнергии начали распространяться системы с использованием нагревательных кабелей. Особо широко они стали распространяться в последние 10–15 лет. Следует указать зоны наибольшего распространения «теплых полов». Сегодня это страны Северной Европы — Финляндия, Швеция, Норвегия, Дания, где значительная доля систем отопления зданий приходится на системы «теплый пол». По различным источникам, эта доля составляет от 15 до 50%. Интересно, что весьма быстро распространяются эти системы в странах с достаточно теплым климатом — Испания, Франция, страны Латинской Америки, Ближнего и Среднего Востока. Это связано с тем, что отопительный период в этих широтах весьма короток, а наиболее низкие температуры часто не опускаются ниже +3 — +5°C. Поскольку капитальные затраты на устройство «теплых полов» весьма низки, и они не занимают много места, эти системы распространяются все шире и шире. Подмечено, что действует правило: какова доля в энергетике страны электричества, производимого возобновляемыми источниками (атомные и гидроэлектростанции), такова и доля электрического отопления. Россия, естественно, является исключением из правил. Еще 15 лет назад системы «теплый пол» как бытовой товар были совершенно неизвестны. Сегодня квартира не может считаться не только элитной, а даже средней, если в ней нет «теплого пола» в ванной или кухне, а то и во всех помещениях.

Виды теплого пола:

1) водяной теплый пол, осуществляемый теплоносителем, проходящим по трубопроводу, проложенному в конструкции пола.

2) электрический теплый пол, работает с помощью тепловыделяющих кабелей, расположенными в конструкции пола.

I. ВОДЯНОЙ ТЕПЛЫЙ ПОЛ

После того как выбран тип теплого пола (тип теплоизоляции, тип трубопровода, толщина излучающей стяжки и вид окончательной отделки), расчет сводится к определению четырех основных параметров:

• температуры поверхности пола в корреляции с температурой воздуха, °С;

• межосевого расстояния между трубками змеевика, см;

• излучающей способности, Вт/м2;

• теплового перепада между средней температурой теплоносителя и температурой воздуха, К.

Плотность укладки труб зависит от:

– требуемой производительности обогревающего пола (теплопотерь помещения);

– типа покрытия пола;

– принятых параметров теплоносителя ;

– температуры воздуха в помещении.

Рекомендуется сгущение шага труб у внешних стен (так называемая граничная зона) с целью увеличения температуры пола и тепловой производительности в местах, где имеются наибольшие затраты тепла.

На рисунке представлена конструкция подпольного нагревателя.

2 – тепловая изоляция;

3 – лента краевая (отделяющая от внешних стен);

4 – влагоустойчивая изоляция (пленка РЕ);

5 – бетонная отливка;

6 – половое покрытие;

Половое покрытие имеет существенное влияние на тепловую эффективность нагревателя и учтено в табл. 1 – 3.

Тип полового покрытия: Rw=0,02 м2К/Вт – керамика, глазурь, камень

Ссылка на основную публикацию